

STATUS OF THE DESY ATLAS UPGRADE ACTIVITIES

Ingrid-Maria Gregor

ATLAS Inner Detector - UTOPIA Layout (>2020)

- LHC Upgrade Schedule
- IBL Activities
- Endcap Strip Activities

WHY UPGRADE?

- The new discoveries hoped for will need a lot of data to understand their nature
 - Higgs parameters
 - SUSY spectroscopy
 - Triple gauge couplings
 - VV scattering at ~1 TeV
- In addition, the potential is significantly extended for (more difficult) physics discoveries

Detector Challenges

- event pile-up, hit rates, occupancies ...
 - improve on: material, trigger, pattern recognition, data BW, data storage

radiation damage

 improve on:materials, electronics, links, ageing, ...

0.2 x 1034 cm-2s-1 (2013)

5 collisions per BX

1 x 1035 cm-2s-1 (>2025 ?)

400 collisions per BX (100 with luminosity levelling)

TENTATIVE SCHEDULE LHC UPGRADE

- LHC schedule was just revised (see Bulletin last night)
- Main change: LHC is going to run in 2012
- The beam energy will likely remain 3.5 TeV in 2011, based on a careful assessment of risks vs benefits.
- 15 months shutdown shifted to 2013

further improved

injector chain?

TENTATIVE ATLAS PLANS

- Schedule as planned until recently
- Phase 0 (2012):
 - Pixel: opto-electronics repair
 - Muon/forward: Beam-pipe
 -> Beryllium
 - Infrastructure consolidation

- Phase 1 (>2016):
 - Pixel: Insertable B-Layer (IBL) ??
 - Muon: additional SCS layers
 - TDAQ: moderate upgrades, improved level-2 triggers
- minor consolidations: TRT HV PS, LAr LV PS,

- Phase 2 (>2020):
 - ID: new tracker
 - LAr: barrel electronics and new forward elements
 - Tile Calorimeter: new electronics
 - Muons: new forward layers
 - TDAQ: major upgrades

PHASE I: INSERTABLE B-LAYER (IBL)

Ingrid-Maria Gregor, DESY - Overview ATLAS Upgrade Activities at DESY

New innermost layer around smaller beam-pipe, 14 staves, 160 MHz readout, evaporative cooling (CO2)

Expected improvement

- IP res Ζ: 100μm->~60μm
- IP res RΦ : 10μm -> 7μm
- B-tagging: Light Jet rejection factor improves by factor~2
- BUT: to maintain Pixel Detector performance with inserted layer the material budget is critical.
 - The heart of the detector three different sensor options under study:
 - Planar sensors
 - 3D sensors
 - Diamond sensors
 - to choose the right sensor type all sensors need to be tested under the same conditions
 - New Front End chip needed to be ready for higher occupancy and radiation environment
 - to be ready for a production this year -> test beam as soon as possible

DESY CONTRIBUTION TO IBL

- Procurement and testing of optical links
- Provision and running of EUDET telescope
 - hardware support
 - data taking and analysis
 - maintenance of analysis software
 - extension of software for ATLAS pixel sensors

EUDET telescope

- Ready for FE-I4 IBL test beams at DESY
- February: first test beam of FE-I4
- April: test beam of irradiated FE-I4
- Summer: a number of test beams of sensors at CERN (with EUDET telescope)
- important input to sensor decision and chip assessment

PHASE II: STRIP ENDCAP

- New Silicon strip detector will consists of barrel and two end caps
- The diameter of the end cap discs increases to 2 m (~double of current diameter)
- DESY is preparing for high-visibility largescale upgrade projects.
- In ATLAS: main assembly site for one full end cap -> highly welcome with ATLAS management and strip detector upgrade community
- 5 discs on each side
 - →R_{out}= 95.0cm
 - \rightarrow R_{in} = 33.7cm for all but the last disc.

 \rightarrow Short strip sensors up to R~60cm (2cm) \rightarrow Long strips up to Rout (6cm)

WHAT IS A PETAL ?

- Ingrid-Maria Gregor, DESY Overview ATLAS Upgrade Activities at DESY
- **Hybrid** = capton board with FE chips (ABCNext, connection via wire bonds)
- Module = silicon sensor with readout hybrid (connection via wire bonds)
- Petal = petal core structure + cooling + electrical services (power, data, TTC) + modules:
 - 2 Carbon Facings + Honeycomb sandwich core (6mm)
 - Carbon Fibre tubes on sides
 - Independent CO₂ cooling pipe
 - Independent e- services + Bus cable
 - Control card on side
 - 2 x 9 modules

Hybrid positions and dimensions

6 different sensor layouts!

DESY CONTRIBUTION

MC SIMULATIONS

- Recently new sub-group within ATLAS organised to push the simulation efforts towards a new inner tracker for HL-LHC
- Optimise physics performance in the technological and other boundaries -> simulation is a crucial effort
- DESY will contribute significantly to this effort (new team formed recently)
- Current HL-LHC detector implementation
 - Producing simulated data sample
 - Performance plots: efficiency, fake rate, etc...
- Goal is to devise an optimal layout for the strip endcap
 - Aim to achieve performance comparable to current detector

Simulated SLHC event with $L = 10 \times 10^{34} \text{ cm}^{-2} \text{s}^{-1}$

DETECTOR MODULES

Sensors

- Based on experiences with with prototype sensors for the barrel strip detector upgrade (STAVE09) -> knowledge transfer to end cap sensor design
- EndCap sensor design is more complicated due to petal shape => very expensive and probably too much for this prototype phase
- Sensors for STAVE09 and later for PETAL2014 will be tested in Zeuthen and also wire bonded to the hybrids

Hybrids

- Polyimide hybrids with ABCNext chips will be connected via wire bonds to the sensor
- University of Freiburg will design the first prototype for the endcap

Module of current endcap strip detector

SETUP IN ZEUTHEN

Characterisation / test (verify vendor specifications) of sensors:

- 10 full-size strip sensors available + 4 mechanical prototypes
- IV / CV measurements using new semi-automatic probe station installed in October / November; software development ongoing, first automated measurements before Christmas

Strip sensor module production

- Design adaption of mechanical tools for in-house production at Zeuthen
- Hybrids will arrive by end of January, too \rightarrow start of gluing / wire bonding tests
- Setup of DAQ system and tests with single read-out chip ongoing

Efficiency studies of different powering options for petals

PETAL MECHANICS

- Measurements and finite element analysis of mechanical properties
- First petal mechanical prototype was build
- Next prototype will closed to design (including honeycomb, pocofoam and cooling pipe)
- Focusing on thermal measurements
- Collaboration with NIKHEF and Valencia to find optimal design of petal

- DESY ATLAS group is active in many areas from operation to upgrade projects
- The test beam efforts will help to select the right sensor for the insertable B-Layer
- The MC team for the Upgrade team grew nicely in the recent months, now we have the possibility to shape the future ATLAS Inner Tracker
- The mechanics is focusing on thermal studies for the petal design
- In February we will have all parts together to build the first full silicon module
- The ATLAS Upgrade team will be strengthened by additional members
- The LHC Upgrade activities will be a good opportunity to have a visible DESY impact in ATLAS also in the detector construction

WHY IS A NEW B-LAYER NEEDED ?

Hardware wise

Radius = 50 mm							
Year	Integrated luminosity (fb ⁻¹)	Φ _{eq} [10 ¹⁴ n _{eq} cm ⁻²]	V _D (initial) Volts	V _D (max) Volts	V _D (annealed) Volts	Charge efficiency €	
2009 +1	6	0.14	62	12	15	0.99	
2010 + 1	18	0.42	14	23	16	0.97	
2011 + 1	48	1.13	19	70	51	0.92	
2012 +1	108	2.56	59	155	118	0.85	
		(3.85)	(87)	(230)	(174)		
8 month shutdown							
2013 + 1	198	4.73	131	276	220	0.78	
2014 + 1	318	7.61	238	430	354	0.70	
2015 +1	468	11.21	376	616	521	0.61	
2016 +1	648	15.52	546	833	718	0.49	
		(23.28)	(784)	(1214)	(1039)	(0.36)	

Table taken from BLTF recommendations, one year added

- "Soft" failure
 - degradation of sensor due to radiation damage
 - example: sensor would survive until 2013, but not until 2017
 - as long LHC not running it is very difficult to estimate this
- "Hard" failure -> some fraction of the detector stops functioning
 - cooling system failure that requires a detector warm up -> impact on sensor
 - failure of an opto-board -> no connection to part of detector
 -

IBL PERFORMANCE

Physics wise

- IP res Z: 100μm->~60μm
- IP res RΦ : 10μm -> 7μm
- B-tagging: Light Jet rejection factor improves by factor ~2
- BUT: to maintain Pixel Detector performance with inserted layer the material budget is critical.

Component	% X ₀
beam-pipe	0.6
New-BL @ R=3.5 cm	1.5
Old BL @ R=5 cm	2.7
L1 @ R=8 cm	2.7
L2 + Serv. @ R=12 cm	3.5
Total	11.0

example: 100um Silicon = 0.11% X₀ (ILC)

LAYOUTS UNDER STUDY

Ingrid-Maria Gregor, DESY - Overview ATLAS Upgrade Activities at DESY

- 14 staves, each with 32 FE-I4 Frontend chips
- Sensor surface ~ only 0.2m²
- 16 degree tilt angle
- ~35 mm sensor radius
- ~33 Inner Radius, 41.5 Outer Radius

- Uses newly developed FE chip: FE-I4
- Pad size 50x250μm
- Chip size 20.1x19.6mm
- Radiation hardness >200Mrad
- Beam pipe IR 25mm (tbc)

Present B-Layer

IBL with 2 sensor Rows per stave ("bi-stave")

IBL with sing<u>le</u> Sensor row

Beam Pipe with Insulation and Heater pads for bake out

Ingrid-Maria Gregor, DESY - Overview ATLAS Upgrade Activities at DESY

THREE DIFFERENT APPROACHES

Planar Sensor

- current design is an n-in-n planar sensor
- silicon diode
- different designs under study (n-in-n; n-in-p)
- radiation hardness proven up to $2.4 \cdot 10^{16} \text{ p/cm}^2$
- problem: HV might need to exceed 1000V

3D Silicon

- Both electrode types are processed inside the detector bulk instead of being implanted on the wafer's surface.
- Max. drift and depletion distance set by electrode spacing
- Reduced collection time and depletion voltage
- Low charge sharing

CVD (Diamond)

- Poly crystalline and single crystal
- Low leakage current, low noise, low capacitance
- Radiation hard material
- Operation at room temperature possible
- Drawback: 50% signal compared to silicon for same X₀ but better S/N ratio (no dark current)

None of the three technologies is proven to be suitable or to be excluded

New architecture to reduce inefficiencies to be ready for higher occupancy

- Great fraction (~90%) devoted to pixel array
- Lower power/pixel & higher hit rate: store hits locally in pixel and distribute the trigger
- Increased rad hard

- One of the biggest chips in HEP
- Submitted July 2010; delivery Sept. 23
- Intensive testing under way -> so far very positive
- Final FE-I4B production in <1 year</p>
- IBL 2013 -> production as soon as possible (no time for errors)

USBPIX IMPLEMENTATION IN EUDAQ

- USBpix an alternative to common TurboDAQ (TPLL, TPCC) system
- Will be used for IBL testbeams (FE-I4) in 2011
- Was integrated in the EUDET Telescope and tested during first IBL testbeam in November 2011

The setup

Online monitoring and offline analysis

- System was running very stably
- Offline analysis results reasonable